When and how an error yields a Dirichlet form

نویسندگان

  • Nicolas Bouleau
  • Nicolas BOULEAU
چکیده

We consider a random variable Y and approximations Yn, n ∈ N, defined on the same probability space with values in the same measurable space as Y . We are interested in situations where the approximations Yn allow to define a Dirichlet form in the space L (PY ) where PY is the law of Y . Our approach consists in studying both biases and variances. The article attempts to propose a general theoretical framework. It is illustrated by several examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

On the Riemann Zeta-function and the Divisor Problem

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t) − 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x) − 1 2 ∆(4x), then we obtain ∫ T 0 (E(t)) dt ≪ε T . We also show how our method of proof yields the bound R

متن کامل

Dirichlet forms methods, an application to the propagation of the error due to the Euler scheme

We present recent advances on Dirichlet forms methods either to extend financial models beyond the usual stochastic calculus or to study stochastic models with less classical tools. In this spirit, we interpret the asymptotic error on the solution of an sde due to the Euler scheme (Kurtz and Protter [Ku-Pr-91a]) in terms of a Dirichlet form on the Wiener space, what allows to propagate this err...

متن کامل

Convergence Analysis of a Galerkin Boundary Element Method for the Dirichlet Laplacian Eigenvalue Problem

In this paper, a rigorous convergence and error analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem is presented. The formulation of the eigenvalue problem in terms of a boundary integral equation yields a nonlinear boundary integral operator eigenvalue problem. This nonlinear eigenvalue problem and its Galerkin approximation are analyzed in the framewo...

متن کامل

Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function

The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006